
Beyond Routing Games: 
Network Formation Games 



Network Games (NG) 

 NG model the various ways in which selfish users (i.e., 
players) strategically interact in using a (either 
communication, computer, social, etc.) network (modelled 
as a graph) 

 The Internet routing game is a particular type of 
network congestion game 

 Other examples of NG: social network games, graphical 
games, network design games, network creation games, 
etc.  

 Notice that each of these games is actually a class of 
games, where each element of the class is specified by 
the actual input graph, and it is called an instance of the 
game (i.e, it is a specific game) 



Network Formation Games (NFG) 

 NFG are NG that aim to capture two competing issues for 
players when using a network for communication purposes:  
 to minimize the afforded cost 
 to be provided with a high quality of service 

 Two big categories of NFG: 
 Network Design Games (a.k.a. Global Connection Games): Users 

autonomously design a communication subnetwork embedded in an 
already existing network with the selfish goal of sharing costs in 
using it for a point-to-point communication 

 Network Creation Games (a.k.a. Local Connection Games): Users 
autonomously form ex-novo a network that connects them for 
reciprocal communication (e.g., downloading files in P2P networks, 
exchanging messages in social networks, etc.) 

 



First case study: 
Network Design Games 

(a.k.a. Global Connection 
Games) 

 



Introduction 

 Given a weighted graph G, a Global Connection 
Game (GCG) is a game that models the selfish 
design of a communication subnetwork of G, 
i.e., a set of point-to-point communication 
paths, where each path is associated with a 
player, and the selfish goal of each player is 
to share the costs for a joint use with other 
players of the edges on its selected path  

 In other words, players:  
 pay for the links they personally use 
 benefit from sharing links with other players in the 

selected subnetwork 



The formal definition of a GCG 

 It is given a directed weighted graph G=(V,E,c); ce will 
denote the non-negative real weigth of e  E 

 k players; each player is associated with a commodity (si, 
ti) , with si,ti V, and the strategy for a player i is to 
select a path Pi in G from si to ti 

 Let ke denote the load of edge e, i.e., the number of 
players using e; the cost of Pi for player i in a strategy 
profile S=(P1,…,Pk) is shared with all the other players 
using (part of) it, namely: 

costi(S) =  ce/ke ePi 

this cost-sharing scheme is called  
fair or Shapley cost-sharing mechanism 



The formal definition of a 
GCG (2) 

 Given a strategy vector S, the designed 
network N(S) is given by the union of all paths Pi  

 Then, the social-choice function is the 
utilitarian social cost, namely the total cost of 
the designed network: 
 

 
 Notice that each player has a favorable effect 

on the cost paid by other players (so-called 
cross monotonicity), as opposed to the 
congestion model of selfish routing  

     C(S)=  costi(S) =    ce/ke=   ce ePi i i eN(S) 



Open questions 

 What is a stable network? We use NE as the 
solution concept, and we will seek for the 
existence of NE 

 How to evaluate the overall quality of a stable 
network? We compare its cost to that of an 
optimal (in general, unstable) network, and we 
will try to estimate a bound on the efficiency 
loss resulting from selfishness 

 Notice that the problem of finding an optimal 
network is a classic optimization problem (i.e., 
the network design problem), which is known 
to be NP-hard even if G is unweighted 



Bounding the loss of efficiency 

 Remind that a network is optimal or socially 
efficient if it minimizes the social cost (i.e., it 
minimizes the social-choice function) 

 We know that the PoA is useful to estimate 
the loss of efficiency we may have in the 
worst case, as given by the ratio between the 
cost of a worst stable network and the cost 
of an optimal network 

 But what about the ratio between the cost of 
a best stable network and the cost of an 
optimal network? 



The price of stability (PoS) 

 Definition (Schulz & Moses, 2003): Given a (single-instance) 
game G and a social-choice function C (which depends on the 
payoff of all the players), let S be the set of all NE of G. If 
the payoff represents a cost (resp., a utility) for a player, 
let OPT be the outcome of G minimizing (resp., maximizing) 
C. Then, the Price of Stability (PoS) of G w.r.t. C is: 

 

 
 Remark: If G is a class of games (as for GCG), then its PoS 

is the maximum/minimum among the PoS of all the instances 
of G, depending on whether the payoff for a player is 
either a cost or a utility. 
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Some remarks 

 PoA and PoS are (for positive s.c.f. C) 
  1 for minimization (i.e., payoffs are costs) games 
  1 for maximization (i.e., payoffs are utilities) games 

 PoA and PoS are small when they are close to 1 
 PoS is at least as close to 1 than PoA  
 In a game with a unique NE, PoA=PoS 
 Why studying the PoS? 

 sometimes a nontrivial bound is possible only for PoS 
 PoS quantifies a lower bound to the efficiency loss 

resulting from selfishness 
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An example 

1 

1 

1 1 3 

3 

3 2 

4 5.5 

s1 

s2 

t1 t2 

optimal network has cost 12 

cost1=7 
cost2=5 

is it stable? 



An example 
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 PoA  13/12, PoS ≤ 13/12 

cost1=5 
cost2=8 

is it stable? …yes, and has cost 13! 

…no!, player 1 can decrease its cost 



An example 
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the social cost is 12.5  PoS = 12.5/12 

cost1=5 
cost2=7.5 

…a best possible NE: 

Homework: find a worst possible NE 



Every instance of the GCG has a pure Nash equilibrium, and 
best response dynamics (i.e., that in which each player at 
each step selects its best available strategy) always 
converges. 

Theorem 1 

The PoA of a GCG with k players is at most k (i.e., every 
instance of the game has PoA ≤ k), and this is tight (i.e., we 
can exhibit an instance of the game whose PoA is k). 

Theorem 2 

The PoS of a GCG with k players is at most Hk, the k-th 
harmonic number (i.e., every instance of the game has 
PoS ≤ Hk), and this is tight (i.e., we can exhibit an 
instance of the game whose PoS is Hk) 

Theorem 3 



For any finite game, an exact potential function  is a  
function that maps every strategy vector S to some real 
value and satisfies the following condition: 

The potential function method 

S=(s1,…,si,,…,sk), let s’isi, and let S’=(s1,…,s’i,…,sk), then 

(S)-(S’) = costi(S)-costi(S’). 

A (finite) game that does possess an exact potential function  
is called potential game 



Every potential game has at least one pure Nash 
equilibrium, namely the strategy vector Ŝ that 
minimizes (resp., maximizes) , assuming players’ 
payoffs are costs (resp., utilities). 

Lemma 1 

Proof (minimization): Observe that  is bounded. Then, 
starting from Ŝ=(ŝ1,…, ŝi,…, ŝk), consider any move by a 
player i that results in a new strategy vector S=(Ŝ-i,si) = 
(ŝ1,…, ŝi-1,si,…, ŝk). Since (Ŝ) is minimum, we have: 

(Ŝ)-(S) = costi(Ŝ)-costi(S) 

 0 

costi(Ŝ)  costi(S) 

player i cannot 
decrease its cost, 
thus Ŝ is a NE. 



In any finite potential game, best response dynamics 
always converges to a Nash equilibrium 

Lemma 2 

Observation: any state S with the property that (S) cannot be 
decreased by changing any single component of S is a NE by the 
same argument. Furthermore, by definition, improving moves for 
players decrease the value of the potential function, which is 
bounded. Together, these observations imply the following result. 

Convergence in potential games 

 However, it may be the case that converging to a NE 
takes an exponential (in the number of players) number 
of steps! 



…turning our attention to 
the global connection game… 

Let  be the following function mapping any strategy 
vector S to a real value [Rosenthal 1973]: 

(S) = eN(S) e(S) 

where (recall that ke is the number of players using e) 

e(S) = ce · H   = ce · (1+1/2+…+1/ke). ke 



Let S=(P1,…,Pk), let P’i be an alternative path for some  
player i, and define a new strategy vector S’=(S-i,P’i). 
Then:  

Lemma 3 ( is a potential function) 

(S) - (S’) = costi(S) – costi(S’). 

Proof: 
When player i switches from Pi to P’i, some edges of N(S) 
increase their load by 1, some others decrease it by 1, and the 
remaining do not change it. Then, it suffices to notice that: 
• If load of edge e increases by 1, its contribution to the 

potential function increases by ce/(ke+1) 
• If load of edge e decreases by 1, its contribution to the 

potential function decreases by ce/ke 

(S) -(S’) = (S) -(S-Pi+P’i) = (S) –  

((S) - ePi ce/ke + eP’i ce/(ke+1))= costi(S) – costi(S’).  



Every instance of the GCG has a pure Nash equilibrium, 
and best response dynamics always converges. 

Theorem 1 

Proof: From Lemma 3, a GCG is a potential game, and 
from Lemma 1 and 2 best response dynamics converges 
to a pure NE. 

Existence of a NE 

 Instead, it can be shown that finding a NE of cost at 
most C (and so, finding a best/worst NE) is NP-hard! 

 It can be shown that finding a best response for a 
player is polynomial (it suffices to find a shortest path in 
G where each edges e is weighted as ce/(ke+1)) 
  



Price of Anarchy: a lower 
bound 

s1,…,sk t1,…,tk 

k 

1 

optimal network has cost 1 

best NE: all players use the lower edge 

worst NE: all players use the upper edge 

PoS is 1 

PoA is k  
 



Upper-bounding the PoA 

The price of anarchy in the global connection 
game with k players is at most k (and so, from the 
previous lower bound, this is tight). 

Theorem 2 

Proof: Let OPT=(P1
*,…,Pk

*) denote the optimal set of paths (i.e., a set of 
paths minimizing C). Let i be a shortest path in G=(V,E,c) between si and 
ti w.r.t. c, and let c(i) = eice be the length of such a path. Finally, let 
S be any NE. Observe that costi(S)≤c(i) (otherwise the player i would 
change to i ). Then: 
 

     C(S) =   costi(S) ≤    c(i) ≤    c(Pi
*) = 

 
             ce ≤           k· ce/ke =      k·costi(OPT) = k· C(OPT). 
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PoS for GCG: a lower bound 
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The optimal solution has a cost of 1+ 

is it stable? 

PoS for GCG: a lower bound 
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…no! player k can decrease its cost… 

is it stable? 

PoS for GCG: a lower bound 
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>o: small value 

…no! player k-1 can decrease its cost… 

is it stable? 

PoS for GCG: a lower bound 
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The only stable network 

social cost: C(S)=  1/j = Hk  ln k + 1   k-th harmonic number 
j=1 

k 

PoS for GCG: a lower bound 



Suppose that we have a potential game with potential 
function , and assume that for any outcome S we have 

Lemma 4 

Proof: 
Let Ŝ be the strategy vector minimizing  (i.e., Ŝ is a NE, 
from Lemma 1). Let S* be the strategy vector minimizing 
the social cost 

we have: 

(Ŝ)  (S*)  

C(S)/A  (S)  B C(S) 

for some A,B>0. Then the price of stability is at most AB. 

 B C(S*)      C(Ŝ)/A  

 PoS ≤ C(Ŝ)/C(S*) ≤ A·B.  



Lemma 5 (Bounding )  

C(S)  (S)  Hk C(S). 

For any strategy vector S in the GCG, we have: 

(S) = eN(S) e(S) = eN(S) ce· Hke 

Proof: Indeed: 

 (S)  C(S) = eN(S) ce 

and (S) ≤ Hk· C(S) = eN(S) ce· Hk. 



The price of stability in the global connection 
game with k players is at most Hk, the k-th 
harmonic number (and so, from the previous lower 
bound, this is tight). 
 

Theorem 3 

Proof: From Lemma 3, a GCG is a potential game, and 
from Lemma 5 and Lemma 4 (with A=1 and B=Hk), its PoS 
is at most Hk. 

Upper-bounding the PoS 


